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Higher-order nonlinear corrections to the Stokes pendulum problem are calculated 
in perturbation schemes for small values of Reynolds numbers = urn do/2v. Here 
the controlling lengthscale $o is the displacement amplitude of the undisturbed 
periodic motion, urn is the velocity amplitude and v is the kinematic viscosity. 
Solutions for two general types of periodic motion are found; namely orbital motion 
as under deep water waves and oscillatory motion as under shallow water or acoustic 
waves. These solutions are found by matched asymptotic expansions using the 
fundamental irrotational oscillation to drive a thin Stokes a.c. boundary layer over 
the surface of the sphere. Prom the boundary layer several secondary motions are 
excited which die away in the neighbouring fluid. Among these are an orthogonal 
system of steady, rotational Eulerian streaming currents, and two outwardly 
radiating non-dispersive waves, one having the frequency of the fundamental but 
with a phase shift, the other appearing at the second harmonic. 

With these solutions the forces and torques on a fixed sphere were computed. One 
of the orthogonal components of the rotational streaming field was found to produce 
a rotary lift force which opposed virtual-mass forces and diminished the resultant 
force component in quadrature to the fundamental oscillation. The other streaming 
component contributed damping terms which, unlike leading-order Stokes drag, vary 
nonlinearly with the displacement amplitude. Steady and second-harmonic torques 
were found to act on the sphere about the horizontal axis transverse to the 
fundamental oscillation. 

1. Introduction 
This paper finds an analytic approximation for the motion near a sphere in the 

middle of a column of water while linearized gravity waves progress over the surface 
with phase speed c = a/k. The radian frequency of these monochromatic waves is 
u and k is the wavenumber = 2sc/wavelength. The diameter do of free-particle orbits 
at the depth +h of the sphere will be small with respect to the sphere diameter D = 2a. 
Because the waves are of small steepness e the sphere radius remains small relative 
to the incident wave length, ku 4 1. The problem has thus been simplified physically, 
since diffraction effects and flow separation remain undeveloped. 

The solution herein by matched asymptotic expansions is equivalent at lowest 
order to the Stokes pendulum (Stokes 1851). It proceeds to higher orders in figure 1 
following a linear analysis introduced by Schlichting (1932) and later extended to 
water waves by Longuet-Higgins (1953,1970), Hunt & Johns (1963) and Lamour & 
Mei (1977). It is well known that this linear analysis is subject to some rather 
restrictive assumptions. The severest of these is the low-Reynolds-number form of 
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FIQURE 1. Matching diagram for the solution to a sphere under a linearized 
wave by matched asymptotic expansions. 

the small-amplitude assumption, B2) 4 1. Here the amplitude of the fundamental 
oscillation, go = u m / n ,  must remain small not just relative to the body, but small 
relative to an already thin boundary layer, 

6 = O[(2v /n) t ] ,  or 

R(') = um d, /2v = d;/26' < 1. 

In addition, any rotational corrections generated through the linear analysis are 
assumed not to interact with the irrotational fundamental oscillation, as supported 
by arguments in Riley (1965). The linear analysis assumes that some final steady state 
exists and neglects all transients by considering the problem at some time, f+m, long 
after the initiation of motion. 

We have pursued linear analysis herein to show that the fully three-dimensional 
diffusive solutions, when R(') -+O, are sufficiently well behaved at great distances to 
yield advective corrections to the rotational field outside the periodic boundary layer. 
This waa not accomplished in the more singular two-dimensional or planar problems 
cited above. These advective corrections for small yet non-vanishing Reynolds 
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numbers are of interest because they produce torques and nonlinear corrections to 
the wave forces as well as suggest the birth of certain high-Reynolds-number flow 
features like those calculated numerically by Duck & Smith (1979). 

2. Formulation 
Certain preferred coordinate systems will give great savings in labour when solving 

for the motion near a fixed submerged sphere. The primary coordinate system to 
which the incident waves and the resultant forces on the sphere are referenced is the 
Cartesian system (a,$, 2) with the origin at the centre of the sphere, midway between 
the free surface and a plane flat bottom. In  this system the axis oz is positive in the 
direction of the group velocity, the axis 02 is positive vertically upward, while the 
axis oy is positive transversely in a left-handed system. Since the local boundary 
conditions are with respect to a spherical surface, it will be easier to  prescribe motions 
within a few radii of the sphere in terms of the spherical polar coordinates (P,8, a). 
Here P is the dimensional radial coordinate measured from the centre of the sphere, 
8 is the polar angle about the z-axis and a is the azimuth angle measured from oz 
to a projection of the radius vector in the (y, 2)-plane. 

A number of forced higher-order solutions found in following sections have either 
axisymmetry or concentricity with respect to the horizontal transverse axis q. Work 
on these solutions is simplified with respect to a Cartesian frame (4', $', 8') obtained 
by rotating the primary system (8, $, 2) by in around the vertical axis. The spherical 
polar coordinates relative to the rotated system are (P, e', a'). The transformation 
between the primary and rotated coordinates is given by 

(2.1) I 4' = fj = P cose' = P sin8 sina, 

fj' = - 2  = P sine' sina' = - P  cos8, 

5' = 2 = B sine' cosa' = B sin8 cosa. 

Boundary-layer solutions will be developed in a thin spherical shell and lend 
themselves to description in curvilinear coordinates ($, p,Z) or (P, f',6). The 
unprimed system has its origin fixed to the surface of the sphere at 8 = 0. The axis 
O Y  is normal to  the spherical surface, while OX and 02 are the axes tangential to 
the surface along arcs of longitude and latitude respectively. The primed curvilinear 
system has the same arrangement about its origin at e'= 0. The coordinate 
transformations from the curvilinear to the spherical polar system are 

$ = a@, P = +-a ,  B = aa sine, (2.2) 

P = a~', P = @-a, 9 = aa' sine'. (2.3) 
The previous studies of Stokes (1851), Schlichting (1932) and Longuet-Higgins 

(1970) took the undisturbed fundamental oscillation to be uniform. The undisturbed 
wave oscillation from classical linearized theory (Lamb 1932, chap. 9) may also be 
approximated as a uniform flow in the neighbourhood of +/a -+ O( 1)  by the following 
expansion : dm = u,z c o s r ~ t - w ~ z  sinat+O(ka),\ 

fi, = vd,, 
where 1 u, = @do, w, = @do tanhikh, 

cosh fkh 
sinh kh 

do = H 
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This error can be made acceptably small while still imposing the necessary small- 
amplitude assumptions if the wave steepness E = ikH is further constrained according 
to 

cosh +kh < k & < k a < {  kh ( k h <  l ) ,  
sinh kh 1 ( k h >  1 ) .  

E 

The first inequality in (2.5) is the low-Reynolds-number assumption, H2) Q 1 ; the 
second is the thin-boundary-layer approximation, S/a Q 1,  the last is the long- 
wavelength limit, ka 4 1, for a finite depth. 

In  order to neglect the effects of compressibility on the velocity distribution 
(Batchelor 1967), we shall require that the frequency of the wave oscillation be 
sufficiently small such that 

ud0/2F 4 1 ,  (2.6) 

where 15 is the speed of sound in the fluid. 
From these scale assumptions take (urn, a, l/a) as the characteristic velocity, length- 

and timescales for the fluid motion outside the periodic boundary layer. Using the 
convention of writing dimensional variables with hats ("), we define the following O( 1 )  
non-dimensional outer variables in the near field : 

The non-dimensionalization of variables by (2.7) will decompose the Naviel-Stokes 
equation outside the boundary layer into a system of ordered linear equations by 
seeking an expansion for the velocity as 

The irrotational fundamental oscillation $(l) consists of the undisturbed incident 
wave from (2.4), and a scattered wave 4,. The long-wavelength limit, ka 4 1, 
to the inviscid scattering problem can be found from solutions by Rayleigh (1876) 
for a sphere in plane shallow water or acoustic-type waves, and by Havelock (1954) 
for a spheroid of arbitrary eccentricity either at rest or translating under deep-water 
waves. For a stationary sphere, both solutions can be reduced over the near field, 
r = 0(1), to the form 

Thus diffraction effects leading to local shadows or bright spots do not appear, as 
the scattered wave spreads energy uniformly in all directions. 

While the condition of vanishing normal flow at the surface of the sphere is met 
by the potential scattering solution (2.9), the no-slip condition cannot be satisfied, 
since 

(2.11) 
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where C = i[l +tanhfkh cosa], 

D = a[ 1 - tanh ikh cos a], 

E,, = -i sina, 

and Re means ‘take the real part’. 
Equations (2.10) and (2.11) show that the fundamental oscillation near the sphere 

consists of a pair of waves concentric with the transverse axis oy and a third 
component wave having axisymmetry about oy. The concentric motion is a mixed 
standing-progressive oscillation, separable into two component waves of amplitudes 
C and D, progressing in opposite directions around each vertical slice, a = constant. 
The axisymmetric wave is a purely standing oscillation with complex amplitude Eo, 
and is everywhere orthogonal to the two concentric component waves. These 
non-vanishing circumferential velocities over the curved surface of the sphere 
produce centrifugal forces manifested as circumferential pressure gradients. These 
pressure gradients will drive the Stokes boundary layer, where ultimately the no-slip 
condition is satisfied. 

To satisfy the no-slip condition there must exist a region of non-uniformity near 
the sphere where the scaling (2.7) of outer variables, leading to negligible viscous 
terms, becomes invalid. To retain the viscous terms i t  may be inferred that the 
thickness of this region must be 0(6/a) .  Hence we define the O( 1 ) inner (boundary-layer) 
variables : 

x B x = -  z = -  
a ’  a ’  

w 
W =  

urn tanhikh’ 

Urn 

(P-a) s y = -  A = - ,  u=-, 
ad ’ a 

(2.12) 

where (0, m, P) are the dimensional tangential and normal velocity components of 
U corresponding to (ti8, aa, a,) respectively. The Navier-Stokes equations for the 
boundary layer in terms of dimensionless variables according to (2.12) are reducible 
to a system of ordered linear equations taking component expansions in the following 
scheme : 

(2.13) 

The lowest-order solution in this acheme is the Stokes a.c. boundary layer on a 
sphere (Lamb 1932, Art. 347), and may be written as 

The primed functions are derivatives with respect to Y, where 

(2.14) 

(2.15) 
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The tangential oscillations of the Stokes boundary-layer limit match with funda- 
mental irrotational oscillations at the outer edge of the boundary layer, (2.10) and 
(2.11). The boundary-layer oscillations normal to the sphere do not match with the 
fundamental oscillation in the limit sense. 

3. Phase-shifted secondary oscillation 

boundary layer vibrates with a normal velocity distribution ui:) given as 
In  attempting the matching, it was learned that the outer edge of the Stokes 

This motion is phase-shifted +c with respect to the fundamental, and must force 
a secondary oscillation on the interior in order that asymptotic matching be satisfied. 
The radiation from these small vibrations O((S/a)  urn) is equivalent to that from a 
vibrating sphere of radius P = a + 8. The secondary oscillations driven in this way may 
be taken as irrotational in the interior near field because shear vanishes at the outer 
edge of the boundary layer and potential flow is fully determined by the instantaneous 
normal velocities of the boundaries. This outward radiation may be expressed 
generally as an expansion in solid spherical harmonics (see Morse & Feshbach 1953, 
p. 1477): 

1 (n-s ) !  h, (P)ar )  
n s  (n+s) !  hk(k(2)a) 

x p8,(cos8) s,” 6 U~))(cose) coss(01-01~) sin8 deda, . (3.2) 

#2) = Re {m X X s8(2n+ 1) ~ 

I 
Here E, is Neumann’s coefficient, P, is the Legendre function of order s and degree n,  
h, is the spherical Hankel function of the first kind and degree n,  the prime denotes 
derivatives with respect to r .  The radiation due to the secondary wave will propagate 
out through the fluid a t  the speed of sound I?, so that a/uo = ( c / @  ka 4 1 .  By 
condition (2.5), ka has been taken as small. The phase speed of the surface gravity 
waves admissible by (2.6) is negligible with respect to the speed of sound in water. 
Therefore only the long-wavelength limit to the expansion, where a/ao-+O, is of 
importance here. The lowest-degree solid harmonic that does not vanish over the unit 
sphere appears at n = 1, while solid harmonics of higher degree are negligible to this 
order. The required integrations reduce the expansion to 

I [cos~+i tanh~khsin8cos01](1+i )e~~ . (3 .3)  
a 

The limit to (3 .3)  many radii out from the sphere decays as l / r ,  becoming negligible, 
O((S/a)  (c /@ ka) a t  the free surface. Consequently, the secondary wave behaves as a 
non-dispersive acoustic-type disturbance throughout the interior. 

Over the near field of the sphere, r = 0(1), the secondary wave is given by (3 .3)  
in dimensional form as 

} (3.4) 
a3 
P2 

4 2  u, - [cos 8 + i tanhikh cos 01 sin 61 ei(ut-in) . 
a 
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This is the same dipole as the motion produced by a sphere moving in an otherwise 
frictionless fluid around a small elliptic orbit whose major and minor axes measured 
horizontally and vertically are 

and 
(3.5) 

4. Viscous perturbation of the boundary layer 
In this section we determine whether the correction to the interior from the 

secondary acoustic-wave radiation will further modify the motion in the boundary 
layer. Collecting the terms from the Navier-Stokes equations together with the 
corrections to the pressure gradients from the secondary wave yields the following 
equations of motion to the first viscous perturbation of the Stokes boundary layer : 

To these the condition of vanishing speed is applied, 

V(2) = 0 ( Y  = O ) ,  (4.4) U(2) = W(2) = 

together with the matching condition, which to this order of approximation requires 
that 

U(2) = - Yuoo-i(l-i)u&, W(2) = - Yu 

To (4.1)-(4.3) we assume solutions of the kind 

U(2) = / 3 (y )  u&), 

W(2) = /3 &), 
(Y) ao 

With (4.6)-(4.8), (4.1)-(4.3) reduce to the following forced linear differential 
equations : 

(4.9) --Zip a2a = l+i+2iY-2(l+i)  e-(l+i)Y, 
ay2 

aY - = 4g-p). 
ay 

(4.10) 

The solution to (4.9) and (4.10) subject to (4.4) and (4.5) are found after successive 
integration to be 

,j = - Y-f(l  -i)+ Ye-(I+i)Y+I(I 2 -i) e-(l+i)Y, (4.11) 

(4.12) y = 4P+2(1-i)  Y e-(l+'IY. 
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As with the O( 1) Stokes boundary-layer solution, the tangential oscillations given 
by the 0(6/a)  solutions limit match with the near field. The boundary-layer solution 
to oscillations normal to the sphere matches asymptotically through order P / a 2  
without further correction to the near field. 

5. Advective perturbation of the boundary layer 
Having made all lower-order viscous corrections to the boundary-layer profile, we 

now iterate with that profile in specifying the O(d,/D) nonlinear curvature terms a t  
this next order of approximation to the Navier-Stokes equation. The O(d, /D) 
equations of motion obtained for the boundary layer in this way are forced by 
products of complex periodic functions. Therefore each admits to separation into 
time-independent and time-dependent equations. Let the time-independent solutiom 
be denoted by ( Ucu) ,  ( W @ ) )  and ( V(,)), and the time-dependent parts by U{;], W$) 
and V{;). The full O(d, /D)  solutions may be expressed as 

W(,) = ( W',)) + I#'{;], (5.1) U(,)  = (U"))  + U{!], V(') = ( V ( ' ) )  + V{;]. 

The following equations for the steady tangential O(d, /D)  motion are realized: 

( U ( 3 ) )  
a 2  

ay2 
-- 

+ (1 - y'y'* + 2 c d g )  I [ 1 - tanh2+kh cos2 

and 

-__ a 2  ( WCu) = Re {( 1 - y'y'* +2g dy'* -) 9 - [tanhikh sinX sin (E)] 
ay2 dY 8 sin X 

-(l-y'y'*+2[-) dy' * [f cosxsin (-)I}, z (5.3) dY sin X 

where asterisks denote complex conjugates. The equations for the unsteady part, 
which factor out, are 

1 
4 

+- (1 - c* y'* + 25* q, dY ( -iE3-E4) e-i2t, (5.5) 

where 

z 
sin X 

1 + tanh2 ikh cos2 (-)] sin 2X, E,  = f cos X sin 

E, = f tanhikh cos ( - cos 2X, E4 = t tanh fkh sin X sin 
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The normal O(d,/D) motions are given by the continuity equation 

On these equations the conditions of vanishing surface speed is imposed, 

plus a matching condition at the outer edge of the boundary layer. We require only 
that the solution vary slowly across the outer edge of the boundary layer to allow 
overlap with O(d, /D)  terms in the near field. Therefore we take 

Solutions to the steady components by successive integrations of (5.2), (5.3) and 
(5.6) such that the boundary conditions (5.7) and (5.8) are satisfied show that 

2 ( U s ) )  = Re i:n2 tanhikh cos - I sin X 

-inl [ 1 - cos2 (&) tanh2 ikh] sin 2X}, (5.9) 

( = Re -inl tanh ?jkh sin X sin ( - ,Tx) +inl cos x sin I 
1 - tanh2 ikh cos2 

3 tanh2?jkh cos2 + 1-2 tanh2ikh 

where 

nl = ( l + i )  ye-(1-i)Y+(!i71) e-(l-i)Y-li e- ( l+ i )Y-  1 

n2 = +i) ye-(I-i)Y+(-:i+1) e-(I-i)Y-li e - ( l + i ) Y + ( l i - l )  e-zY-l+Zi 4 2 ’  

17 = - i y e41-i) Y + (6- i) e41-i) Y + (Q + $i) e-2Y + qy-%iy+ 3; -?. 

Li) e-ZY+a-Zi 4 2 7  2 ( 4 + 2  

2 2 4  

3 2 

The steady tangential component in (5.9), which varies as n2 across the boundary 
layer, was excited by the progressive-type &component of the fundamental oscillation 
in (2.10). It has a profile similar to the steady streaming resulting from a progressive 
disturbance in two dimensions (Longuet-Higgins 1953). Those components of (5.9) 
and (5.10) that vary as nl were excited by the standing part of the fundamental 
oscillation in (2.10) and (2.1 1). They resemble the steady-streaming profiles found in 
two-dimensional boundary layers driven by standing oscillations considered in 
Schlichting (1932), Eckart (1948) and Longuet-Higgins (1953). The normal streaming 
component is found to  grow linearly in Y, but remains small, O(d,6/D2), in the 
neighbourhood of Y + O( 1 ) .  
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FIGURE 2. Successive profiles of the tangential second-harmonic oscillation at Q-cycle intervals across 
the boundary layer. These profiles were evaluated at the locus 8 = +x, a = 0. 

For the unsteady O(d,,/D) boundary-layer motions from (5.4)-(5.6) we assume 

(5.12) 

(5.13) 

solutions that are separable as 

U{i] = c(Y) (El-iE2) eiZt+t;'*(Y) (El+iE,) eFiZt, 

W{:] = c ( Y )  (iE3-E4) eiet+g*(Y) ( -iE3-E4) e-i2t, 

(5.14) 

where 

E5 = !! (3[l+tanh2tkhcos2(-)] z cos2X-3 tanh2~khcos2(-)+tanhz~kh-l}, z 
4 sin X sin X 

E6 = tanhikh cos ( - sin 2 ~ .  

These solutions reduce (5.4) and (5.5) t o  the following second-order linear differential 
equation : 

(5.15) 

Integrating (5.15) such that the boundary conditions (5.7) and (5.8) are met by an 
appropriate choice of integration constants yields 



A submerged sphere excited by small-amplitude periodic motions 209 

The second-harmonic boundary-layer profile on a sphere is plotted in figure 2. It 
contains an additional viscous wave e-2(1+i) absent from the two-dimensional 
solution of Schlichting (1932). The envelope of tangential second-harmonic oscillations 
is seen to damp out at the outer edge of the boundary layer. The normal second- 
harmonic vibrations do not, but rather take on a normally invariant modal pattern 
O((d0 6/D2) Urn). 

6. Second-harmonic oscillation 
The normal second-harmonic vibrations of the outer edge of the boundary layer 

from (5.14) and (5.16) are smaller than the phase-shifted secondary vibrations by a 
factor O(d, /D) and will likewise radiate as an irrotational oscillation into the interior. 
The second-harmonic radiation will be found by the expansion in solid spherical 
harmonics given in (3.2) for two distinct normal velocity distributions. One of these 
will be the deep-water form of (5.14), where tanh$h+l, while the other will be the 
shallow form, where tanh !&h +- 0. Either expansion for the second-harmonic radiation 
will proceed in the long-wavelength limit 2u/u0 -+ 0, according to the assumption 
made in (2.5) and (2.6). The first non-zero solid harmonic does not appear until degree 
n = 2. Solid harmonics of higher degree present only higher-order terms in 2r/u,. 
Integrating and summing over three orders, s = 0,1,2, in the second-degree solid 
harmonic yields 

x[(l-i)  sin2f3cos2a-(1-i) cos28-(l+i) c o s a ~ i n 2 t I ] e ~ ~ ~ }  (tanh$h+l), 

(6.1) 

[ C O S ~ O + C O S ~ ~ ~ ] ( ~ - ~ )  ei23 (ttmh+kh+O), 
(6.2) 

where 

Near the free surface, as r+co, both second-harmonic waves (6.1) and (6.2) are 
small, O((d,  S/D2) (c2/P)  k2a2), and decay as 1 / ~ .  Therefore the second harmonic 
radiates through the interior as an acoustic wave to the order of approximation taken 
in (2.5) and (2.6). 

Over the near field of the sphere both second-harmonic waves decay as l/r3. These 
wavesrepresentsimple sourcedistributions. Thedeep-water expression (6.1) represents 
a second-harmonic disturbance progressing around the transverse horizontal axis of 
the sphere as ei(na'+2d+fn) and decaying transversely as sin2 8'. The shallow-water 
second harmonic (6.2) has axisymmetry about the axis of wave advance and 
represents a standing disturbance with antinodes at both the up- and downwave 
poles, 8 = 0, n. Both second-harmonic oscillations lead the fundamental oscillation 
in the near field by in. 

7. Steady streaming in the near field 
The tangential steady streaming generated by the Reynolds stresses across the 

boundary layer in $5 will now force an O( (d, /D) urn) correction on the interior through 
the matching condition. For a deep-water incident wave, the matching boundary 
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condition is reduced in dependence to a single polar variable when transformed to 
the (x‘, y’, 2’) rotated system, giving 

= -nu,? sinB’+n& sin28’ (tanh+kh+l). (7.1) 

Similarly, the matching condition under a plane shallow-water incident wave 
simplifies in the primary (2, y, z )  system to 

lim ( U@)) = lim ( u )  = -no sin 28 (tanh ikh + 0), (7.2) 
Y+w ,.+l 

where (n,., no, nu) and (n,., net, n , )  are polar unit vectors in the primary and rotated 
systems and where n,.(t2,.o) = O(d,6/D2).  

The deep-water case (7.1) has two orthogonal streaming velocity components. The 
(uapo) component is concentric about the transverse axis and is the unidirectional 
steady streaming due to the progressive part of the fundamental oscillation (2.10). 
It will be referred to as the ‘ circulation streaming ’. The circulation-streaming term 
in (7.1) is identical with the relative surface speeds if the spherical surface at the outer 
edge of the boundary layer were in solid-body rotation about the transverse axis oy 
or ox’ with an angular rotation rate SZ, equal to 

27 dourn 27 do 
= s D(u+S) 4 D2 

tanhikh - - -urn tanhikh. (7.3) 

The (uflo> component in (7.1) is identical in form with the steady streaming in the 
plane shallow-water-wave case (7.2), with each being axisymmetric about the 
transverse axis oy ,and the axis of wave advance ox respectively. These streaming 
components are referred to as ‘acoustic streaming ’ resulting from the standing part 
of the fundamental oscillation (2.10) and (2.11). 

The properties of concentricity and axisymmetry in these two limiting forms of 
the matching boundary condition, (7.1) And (7.2), render description of the resulting 
Eulerian streaming field in terms of the orthogonal functions $ and r, where 

and (7.5) 

@ defines the acoustic-streaming field and f defines the circulatioh-streaming field. 
Solutions for the intermediate case, 0 < w,/urn < 1, are frustrated by the non- 
existence of a stream function, as a consequence of the three-dimensionality of the 
boundary -layer-driven streaming in this regime. 
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With this change of variables, the equations for steady streaming in the near field 
by diffusive vorticity transport, R(2) +0, are given as 

L/(L‘$(3)) = 0, (7.6) 

L’rc3) = 0 (tanh$kh+ i) ,  (7.7) 

and L(L$(3)) = 0 (trtnh$h+O), (7.10) 

- % sin8 sin28, - $(3) - - 0 ( r + l ) ,  
1 a p 3 )  

r 3r r2 
(7.11) 

(7.12) 

where L and L’ are the V2 operators in spherical polar coordinates ( r ,  8, a) and (r,  O f ,  a’) 
respectively, with a/aa = a/aa’ = 0. 

Proceeding now with solutions to the diffusive streaming under a deep-water wave, 
the matching boundary condition (7.8) suggests separating variables by seeking 
solutions to (7.6) of the form 

$ AM(r)  sin 8’ sin 28’, (7.13) 

where A is a constant to be determined. This reduces (7.6) to the following fourth-order 
equidimensional differential equation : 

d4M d2M dM 
dlA dr2 dr 

#-- 12r2 -+24r - = 0. (7.14) 

A power solution to (7.14) subject to (7.8) and (7.9) proceeds readily according to 
methods outlined in Hildebrand (1963). The resulting solution for the acoustic- 
streaming field under a deep-water wave is. 

$@) = - - 1 - - sin 8’ sin 28’ (tanh :%h + 1 ), a 3 (7.15) 

Solutions to (7.10) subject to (7.11) and (7.12) proceed identically with those for 
a deep-water wave. Thus the field of steady streaming under a plane shallow-water 
wave is given by 

45 
64 ( fp) @(3) = - 1 -- sin8 sin28 (tanhfkh+O). (7,16) 

The complementary function will render further simplification for diffusive 
solutions to the circulation-streaming field from (7.7), where 

(7.17) 
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z 

Y 

FIQURE 3. Axonometric representation of the Eulerian streaming field near a sphere due to a 
diffusive steady-state vorticity distribution in the interior of a deep-water surface wave. The 
acoustic streaming is shown in a vertical plane transverse to the surface wave. The tangential 
velocity due to the circulation streaming is profiled radially in a vertical plane along the direction 
of wave advance. The sum of the two streaming fields is portrayed by the swirling streamtube. 

Here is the angular-rotation rate of a spherical shell of fluid of radius r, about 
the transverse axis ox'. Substitution of (7.17) in (7.7) reduces the equation of motion 
to that for a slowly rotating sphere in an infinite volume of still fluid as given in Lamb 
(1932, Art. 334). The solution when the rotation rate is specified according to (7.3) 
is 

(7.18) 

Thus when R(2) + O  the circulation-streaming vorticity is distributed through the 
interior on concentric spherical shells. These rotate about the transverse axis, with 
the rotation rate decaying into the interior as 1 / 9  from a value of S2, at the top of 
the boundary layer. 

The steady tangential components at the O(d, /D)  limit match according to (7.1) 
and (7.2). The normal steady components match asymptotically, leaving a residual 
error O(d,  Se/D3) urn). 

Axonometric representations of the complete three-dimensional diffusive Eulerian 
streaming are given in figure 3 under a deep-water incident wave. The diffusive 
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acoustic streaming shown in the transverse meridional plane under a deep-water wave 
is the same streamline pattern as that found by Bickley (1936) for the transverse 
streaming on a rotating sphere. The streaming is reversed in meridional planes 
through the axis ofwaveadvanceunder aplane shallow-water wave. The shallow-water 
solution (7.16) is equivalent to one for a sphere in sound waves found by Andrews 
t McIntyre (1978), using a different method. 

8. Advective perturbation of the diffusive interior 
This section continues under the hypothesis that the Reynolds number remains 

small, Q 1, without being vanishingly small as assumed in $7. The advective 
terms omitted from the right-hand side of the vorticity-transport equations (7.6), 
(7.7) or (7.10) are O(B(@). Therefore a perturbation of the steady diffusive solutions 
might be assumed of the form 

The diffusive solutions $(3) and f (3)  are sufficiently well behaved that such a 
low-Reynolds-number perturbation will not become singular in the far field, as found 
in low-Reynolds-number steady flows - Stokes and Whitehead’s paradox. A typical 
advective term by iteration with the diffusive solution will be O(R(2)/r6) as r+m. A 
typical viscous term from a cross-product on the left-hand side of (7.6) or (7.10) 
becomes O( l/r4) as r+m. Hence the low-Reynolds-number hypothesis remains valid 
in the far field since 

advective terms 
viscous terms 

The vorticity -transport equations for the advective perturbation of the interior 
streaming may then be written (see Goldstein 1938, pp. 114-115), 

1 
ae 

cote-; e} L$(3) (tanh+kh+O), (8.4) + 2 -  
a p 3 )  

ae ar 

where 
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Consider first solutions to the advective deep-water acoustic streaming field 
Inserting the diffusive solutions @@) and r(3) into the right-hand side of (8.2) renders 
a separation of variables by seeking a solution of the form 

$(4) = "(r)  cos 8' sin2 28' + O'(r) sin 8 sin M', (8.9) 

where N' and 0' are functions of r to be determined. Equation (8.9) will then separate 
(8.2) into two simultaneous fourth-order inhomogeneous ordinary differential 
equations : 

(8.10) 
d2N' div 
dr2 dr 

40r2 -++Or -+28ON = 
d 4 N  

.p-- 
dfl 

d20' do' d 2 N  cw' 12r2 -+24r - = - -- d40' 
1A-- dlA dr2 dr 7:; ( z + $ ) - 2 4 r 2  - p + 4 8 r  -. dr (8.11) 

Following procedures detailed in Hildebrand (1963), the solutions to (8.10) and 
(8.11) subject to (8.5) and (8.7) are found to be 

3 (8.12) 

(8.13) 

Turning attention now to the advective-circulation streaming field, (8.3) admits to 
a separation of variables by assuming a solution of the form: 

r(4) = G(r)  sin2 28' + K ( r )  sin2 8'. (8.14) 

By (8.14), (8.3) is decomposed into the following simultaneous second-order ordinary 
differential equations : 

0.061 798 0.370788 0.556 182 0.247 192 
r 

+ - 
1A + r3 r2 

+ 

N;,., = - 

0.052928 0.411 874 0.04729 0.92930-0.61762. 
r + r2 *h = r4 7.9 

- 

1 3645 1 1215 +- - d2G r2--12G=- - 
dr r2 1024 r4 1024' 

1 1215 1 1215 8G. +- -- d2K 
dr2 r2 256 1A 256 

r2 --2K = -_ - 

Similarly the solutions to (8.15) and (8.16) subject to (8.6) and (8.8) are 

1 1215 1 10935 1 3645 G = -  - +- - 
r4 8192 r3 24576 r2 6144' 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

This completes the solutions to the low-Reynolds-number perturbation of the 
interior field of steady streaming when tanhikh = 1. For the advective-streaming 
correction under a plane shallow-water wave, (8.4) is written with the diffusive 
solutions for from (7.17). Again a separation of variables may be achieved by 
assuming a solution of the form, 

(8.19) 

Substituting (8.19) into (8.4) will result in a pair of simultaneous fourth-order 
inhomogeneous ordinary differential equations. The equation for N is identical with 
(8,lO) and subject to the same boundary conditions. Therefore 

N = N ,  (8.20) 

1 3645 1 3645 1 729 +- - K ( r )  = - - 
r4 18432 r3 10240 r 4608' 

= N ( r )  cos8 sin228+0(r) sin8 sin28. 
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2, 2' 

FIQURE 4. Streamlines due to the advective acoustic streaming $-(4) under a deep-water incident 
wave. The acoustic streaming is shown in a vertical meridional plane that is transverse to the surface 
wave about oy or ox'. 

FIGURE 5. Lines of constant vorticity due to the advective circulation streaming Qco. The curves 
are shown in a vertical plane through the transverse axis oy or ox'. 
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FIGURE 6. Streamlines due to the advective acoustic streaming under a plane linearized 
shallow-water incident wave. The acoustic streaming is shown in a vertical meridional plane that 
lies along the axis of wave advance ox. 

where the solution to N is given by (8.12). The remaining equation separated from 
(8.4) is 

d40 d20 dO 6075 2 1 d2N dN 
dr4 dr2 dr 512 ( r r3) dr dr 

--+- -24r2 7 + 4 8 r  -+240N. (8.21) 1A -- 12r2 -+ 24r - = - 

Inserting (8.12) in (8.21) and enforcing the boundary conditions (8.5) and (8.7) yields 
the following solution : 

+0.094236. (8.22) 

Our solutions fully complete, we can draw the streamline pattern in figure 4 for 
the deep-water advective acoustic streaming from (8.9). It is found that the 
advective-transport process in the interior has shifted the partition between the 
inflow and outflow away from the value 8' = 55' characteristic of the diffusive 
solution in figure 3. Instead, the inflow region has enlarged, while outflow has been 
confined to a narrowing radial jet about the vertical equator. These features spawned 
here at low Reynolds numbers resemble the centrifugal pumping due to a rotating 
sphere at  high Reynolds numbers, 51,a2/v % 1, treated by Howarth (1951). This 
Reynolds number is 0(H2)) if 51, is taken as in (7.3). 

Advective distortion of the circulation streaming under a deep-water wave can be 
seen in figure 5 on the surfaces of constant vorticity a(*) deduced from (8.14). The 
solution is equivalent to concentric oblate caps rotating about the transverse axis 
opposed to the diffusive-circulation rotation. Thus the advective correction r(() will 
diminish the total circulation P )  + R(2)r(4) in the neighbourhood of the transverse 
poles analogously to the loss of circulation near the tips of a three-dimensional wing. 

0.052928 0.411 874 0.75917 0.49446 
1A rs + re r 

- - O(r)  = 
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Radial distance i / a  

FIUURE 7. Radial profiles of the initial and steady-state 0-component of the mass-transport velocity 
(uoL) on a horizontal cylinder and sphere under a deep-water surface wave. The solid curves are 
evaluated on the vertical equator of a sphere, a = 0. 

The advective correction to the diffusive acoustic streaming under a plane 
shallow-water wave, (8.19), has a surprising new feature pictured in figure 6. A pair 
of stationary steady ring vortices are inferred from this meridional-section view. These 
steady eddies are paired around the transverse vertical equator where the vorticity 
and the gradients of vorticity in the boundary layer are a maximum. They persist 
here around the updrift belt of the sphere in consequence of vorticity advection 
remaining weak with respect to vorticity diffusion, R@) -4 1. 

9. Near-field Stokes drift and mass transport 
The Stokes drift (us) and the diffusive Eulerian streaming (u(*)) are of the same 

order, O(u, do/D).  Their combined effect gives the steady-state mass-transport 
velocity ( u,) , where 

(9.1) (a,) = <f i , )+ (Q@)) ,  (a,) = ( jf2(1)d€*VP(1)). 

The Stokes-drift part of mass transport is irrotational and is established with the 
initiation of the fundamental oscillation at t = 0. With the fundamental oscillation 
in the near field of the sphere specified by (2.9) the Stokes drift becomes 

d0 3 a4 a7 1 a4 (a,) = ne u, [ -z (F-T)-(:+2 F)] tanhikh cosa 

d 3 a4 a7 
+n, $ urn [z (F-F)] tanhikh sina cos8. (9.2) 
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FIQURE 8. The mass-transport velocity (aeL) along the circumference, a = O ,  of a sphere under 
laboratory wgves. The solid line is the theoretical average mass-transport velocity around the 
vertical equator on the lower hemisphere of a sphere according to (9.3). 

The Stokes drift in (9.2) is everywhere tangential to the spherical surface, decaying 
in the interior of the wave as l / ~  for r+m. 

Substituting (9.2) and (7.4) into (9.1) can give the initial and final 8-component 
of the mass-transport velocities around the vertical equator of a sphere, u = 0, as a 
function of the radial excursion under a deep-water wave, w,/u, = 1, shown in 
figure 7. For comparison, similar results for a cylinder derived from Longuet-Higgins 
(1970) are included. Initially, at t = 0, only Stokes drift contributes to mass transport. 
All the vorticity is in the boundary layer, so that the diffusive Eulerian streaming has 
not yet developed in the interior. With a ha1  steady-state vorticity distribution as 
t+m, the drift and streaming fields combine linearly under the hypothesis of 
non-interaction between the irrotational and rotational motions. 

Figure 8 gives laboratory results for timing the drift of the leading edge of a dye 
streak that was introduced into the boundary layer through a 0.1 cm internally 
mounted injection port located on the vertical equator at  u = 8 = 0. The observations 
were made in the 2.5 m wide wind/wave channel in the Scripps Institution Hydraulics 
Laboratory using a polished 20 cm diameter sphere fixed by a 0.5 cm diameter strut 
at mid-depth in 154 cm of water. Discrete frequency waves of 0.2, 0.3, 0.4, 0.5, 0.6 
and 0.75 Hz were generated independently with heights of 5-20 cm. This range of 
heights and frequencies spanned the regime of unseparated flow up to and including 
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FIQURE 9. Streakline produced by dye released from the transverse pole, 0 = a = in, with 20 om, 
0.6 Hz waves progressing from left to right over a 20 om sphere at mid-depth in 154 om of water, 
d, /D = 0.359. 

the onset of separation, since 0.053 < d, /D < 1.77. Although the Reynolds number 
remained large, 118 < < 34800, mass transport in the boundary layer is 
independent of the low-Reynolds-number assumption. Furthermore, the steady 
streaming solutions inside the boundary layer, (5.9)-(5.1 l ) ,  remain valid for transi- 
tional waves, 0 < tanhfkh < 1. Therefore these observed drift rates are compared 
directly with the theoretical mass-transport velocity at the top of the boundary layer 
from (9.1). To avoid interference from the support strut situated on the upper 
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hemisphere, the mass-transport comparisons were made by averaging along the 
equator, a = 0, over the lower hemisphere where 

39 do 
~limn,*(fi,),=,dB = -- 8 - D w 

n o r+1 
(9-3) 

Also included in figure 8 are values from Longuet-Higgins (1970), where dye was 
released near a circular cylinder executing circular oscillations in a basin of still fluid. 
It is found that the data fall close to the theory line of (9.3) until boundary-layer 
separation ensues at large amplitudes, as d,/D+O(l). Mass transport is about the 
same near the surfaces of a cylinder or the vertical equator of a sphere as indicated 
by the theoretical steady-state results in figure 7. 

While a net circumferential drift of dye around a = 0 results from the Stokes drift 
and circulation streaming, figure 9 shows the end effects due to the acoustic 
streaming. Dye released from the transverse pole, a = 0 = in, migrates towards the 
vertical equator, a = 0, under the influence of the acoustic streaming. As it proceeds 
away from the transverse pole, the dye streak develops increasing circulation from 
the circulation streaming. The combined action of the acoustic and circulation 
streaming results in the spiral streakline over the transverse hemisphere as portrayed 
in figure 9. 

10. Forces and torques 
The reaction forces and torques on the sphere are calculated from the fluid motion 

in the near field defined by the matched asymptotic solutions (2.8) and (2.13). To 
lowest order, the apportionment of these forces between normal stresses resulting 
from wave pressure and shear stresses developed in the boundary layer is calculated 
directly from the stress tensor in Lamb (1932, Art. 336) evaluated on the sphere. For 
the residual higher-order force components we employ a two-layer momentum survey 
equating the rate of change of fluid momentum within inner and outer concentric 
spherical control volumes to the sum of the forces acting on the boundaries of these 
volumes. The inner control volume is a thin spherical shell of fluid composed of the 
boundary layer. The outer control volume is the fluid outside the boundary layer 
extending to P/a+m. Matching momentum fluxes between the inner and outer 
control volumes and performing the tedious but straightforward integrations results 
in the following theoretical force components on a fixed sphere under a deep-water 
incident wave : 

P,(at) = -pjna3crum a 

a "I +pna2u& [3 (&y (1+;)-D(z+0.32939R(2)-14.5852- 6 do 3 cosaf 

+ p A  d 6  - n a 2 u & E ( L - A )  (cos3a&-sin3a&) (tanhikh+l), (10.1) D a  5 4 2  2 

P,(aE) = P,(crb+in), (10.2) 

PJcrt) = 0. (10.3) 
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Under a plane shallow-water incident wave the force components are found to be 

a ”1 +pna2uh [3 (&y (1 +--) 6 -5 do ( Z + O . ~ W ~ R ( ~ )  3 -4.4867 - cos at 

+ p  - do - 8 .rca2uk 54 (L-A) (cos3d-sin3a€) (tanh+kh+O), (10.4) 
D a  5 1/2 2 

P,(a€) = P,(c€) = 0. (10.5) 

As expected from flow symmetry, the transverse force Py(a€) is zero for both shallow- 
and deep-water limits. 

Calculating r x Freveals that a torque ‘5 also acts on the sphere about the horizontal 
transverse axis oy equal to 

+! !i *(L-i) (cos2crt-sin2a~) 
a D2 128 4 2  2 

The torque in (10.6) has steady and second-harmonic components which vanish 
in the limit of a plane shallow-water wave, tanh+kh+O. 

The theoretical forces calculated in ( lO . l ) ,  (10.2) and (10.4) resemble a Fourier 
decomposition of Morison’s equation based upon the periodic wave-particle velocity 
u, (see Keulegan & Carpenter 1956). The bracketed terms appearing at the 
fundamental, at, in (10.1) and (10.4) are indeed the time-independent virtual mass 
(inertia) and drag coefficients c,  and c f .  However, Morison’s equation will not admit 
the presence of any mean or second-harmonic forces or torques when the fundamental 
oscillation is periodic, (u,) = 0. 

The leading term of the drag coefficient in (10.1) and (10.2) is identical with the 
Stokes pendulum (Stokes 1851 ; Lamb 1932, Art. 356). A -+-power dependence on 
the Reynolds number is a hallmark of laminar boundary layers, either steady or 
periodic. Two-thirds of this leading-order drag-coefficient term is due to boundary- 
layer shear stresses, while the remaining one-third is the in-phase resultant of the 
pressure from the phaae-shifted secondary wave radiation. The O( (&/a) (B(2))--f) 
drag-coefficient term is also the same as that given in the Stokes-pendulum solution, 
and results from the shear stresses of the O(&/a) viscous correction to the boundary- 
layer profile. 

The O(do/D) correction to the drag coefficient in (10.1) and (10.4) is a new result, 
which Stokes’ analysis could not give because of neglect of nonlinear terms. This 
correction is due to the periodic movement of the steady x-directed momentum from 
the diffusive acoustic streaming by the vibrations of the 0(1) wave motion. The 
acoustic-streaming field thereby functions as a source of x-directed momentum. 
Consequently, this effect could be referred to as ‘acoustic thrust’. The O(do/D) 
correction to the drag coefficient from acoustic thrust is twice as large for the plane 
shallow-water wave solution (10.4). This can be explained by the different alignments 
and flow directions of the diffusive acoustic-streaming field between the deep- and 
shallow-water extremes. Since inflow and outflow regions are partitioned about 

8-2 
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8' = 55' and 8 = 55' in deep- and shallow-water extremes respectively (see (7.15) and 
(7.16)), it follows that radial outflow in the deep-water solution must have less 
2-directed momentum than the axial outflow in the shallow-water solution. Therefore 
the alignment and flow direction of the shallow-water diffusive acoustic-streaming 
field makes it a more effective source of %-directed momentum. 

The advective correction on the acoustic streaming fields in both deep- and shallow- 
water extremes intensified the outflow (see figures 4 and 6), thereby increasing the 
2-directed steady momentum available for transport by the O(1) periodic flow. 
Consequently there are additional O( (d, /D) R@)) corrections to the drag coefficient 
in (10.1) and (10.4) resulting from acoustic thrust. The correction at this order is 
stronger in the deep-water case because outflow has been enhanced more by the action 
of centrifugal pumping from the circulation-streaming field. 

The O((d , /D)  (&/a) )  corrections to the drag coefficient in (10.1) and (10.4) result 
from several different higher-order momentum fluxes. Both deep- and shallow-water 
solutions receive contributions from the transport of 0(1) momentum by the 
second-harmonic wave radiation. These momentum fluxes give rise to forces a t  the 
fundamental, d, and at the third harmonic, 3rd. However, the deep-water solution 
receives an additional contribution from the outward flux of circulation-streaming 
momentum by the phase-shifted secondary wave radiation. This momentum flux is 
analogous to induced drag on a three-dimensional lifting body. There are additional 
induced drag contributions from flux terms O( (d:/De) a%&), which unfortunately 
become vanishingly small as T+OO. A similar difficulty was encountered in wing 
theory (Prandtl & Tietjens 1934) and was resolved by lifting-line theory (see Van 
Dyke 1975). Since the aspect ratio of a sphere is not large (4/x), the error in 
calculating induced drag by lifting-line theory is unacceptably large, O(&n2). 

The leading terms of the virtual-mass coefficient through O(&/a) in (10.1) and (10.4) 
would be the same as those in the Stokes-pendulum solution if the fluid-pendulum 
system were oscillated contrary to the pendulum motion to yield a sphere at rest in 
an oscillatory fluid. Two-thirds of the O(&/a) correction to the inviscid value of is 
due to the additional mass of fluid entrained by the retarded boundary-layer flow. 
The remaining one-third of the O(&/a) correction is the in-quadrature pressure 
resultant of the phase-shifted secondary wave radiation. 

An interesting new result in the deep-water wave-force solutions (10.1) and (10.2) 
is the presence of the O(di/D2) corrections, which act to diminish the virtual-mass 
(inertia) coefficient c,. These corrections are due to the inertia of the circulation 
streaming, appearing in the fluid both as a momentum flux far away in the interior, 
and from the boundary layer. These momentum fluxes result in a rotary force Fl on 
the sphere, acting normally to the instantaneous O( I )  velocity u,, as given by 

4 
4 a  

(10.7) 

The Reynolds-number correction in (10.7) results from the advective correction to 
the circulation streaming, and is analogous to the reduction in lift on a three- 
dimensional wing whose aspect ratio is made small. 

The O( (do/D)2  (&/a)) corrections to the virtual-mass coefficient found in both the 
deep- and shallow-water solutions (10.1) and (10.4) are independent of the presence 
of circulation. They are instead the in-quadrature resultant of O( 1) momentum being 
transported by the phase-shifted vibrations of the second harmonic wave. The 
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correction is larger for the deep-water case because the second-harmonic oscillation 
is progressive around the sphere and thereby transports more O( 1) momentum than 
the standing second-harmonic oscillation found for the shallow-water solution. 

11. Conclusions 
(A) Diffusive solutions to the vorticity-transport equations remain sufficiently well 

behaved in three dimensions to iterate for advective corrections at low Reynolds 
numbers in periodic flow. 

(B) These advective corrections exhibit certain high-Reynolds-number-like flow 
features. Among these are stationary steady eddies in the shallow-water case, and 
a radial jet in the deep-water case. 

(C) Resistance coefficients at low Reynolds numbers vary with both frequency- and 
amplitude-dependent parameters. A third-harmonic force and steady and second- 
harmonic torques arise which cannot be approximated by Morison’s equation. 

This research was sponsored by the Office of Naval Research Code 421 under 
contract with the Scripps Institution of Oceanography, University of California. The 
authors particularly credit the contribution of Mr George Halikas, who passed away 
before this work could be completed. 
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